The collapse transition for the lattice trees

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243655
(http://iopscience.iop.org/0305-4470/24/15/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:12

Please note that terms and conditions apply.

The collapse transition for lattice trees

D S Gaunt and S Flesia
Department of Physics, King's College, Strand, London WC2R 2LS, UK

Received 25 March 1991

Abstract

We consider a lattice tree model for the collapse of dilute branched polymers in the good solvent regime in which the collapse is driven by a near-neighbour contact fugacity. We describe some rigorous results, including bounds, for the temperature dependence of the reduced limiting free energy and compare these results with numerical estimates derived from exact enumeration data. From the specific heat, we estimate the collapse temperature T_{c} and the cross-over exponent ϕ_{0} in two and three dimensions. We find $\phi_{0}=$ $0.60 \pm 0.03(d=2)$ and $\phi_{0}=0.82 \pm 0.03(d=3)$. Finally, we speculate on a possible roughening transition which may occur at a temperature $T_{r}<T_{c}$.

1. Introduction

Recently there has been considerable interest in the collapse of branched polymers. Randomly branched polymers in dilute solution in a good solvent have been modelled by lattice animals (i.e. by connected subgraphs of a lattice). As the solvent quality decreases, or alternatively the temperature decreases, the branched polymers become more compact and a tricritical collapse transition is expected to occur. For linear polymers, the existence of an analogous transition is well documented (see, for example, the references cited by Derrida and Herrmann 1983). The existence of a collapse transition in a directed animal model has been proved by Dhar (1987). A directed model for linear polymers has been studied by Binder et al (1990) who determined the location of the collapse transition exactly.

Two basic types of lattice animal model have been proposed to study the collapse of branched polymers. In one of these, the collapse is driven by some kind of near-neighbour fugacity and in the other by a cycle fugacity. However, several variants of these underlying models are possible. For example, the animals may be either weakly embedded or strongly embedded in the lattice (i.e. subgraphs or section graphs, respectively), and their size may be classified either by their site content or their bond content. A more extensive discussion of the various models has been given by Gaunt and Flesia (1990) and by Madras et al (1990). So far all workers (Derrida and Herrmann 1983, Dickman and Schieve 1984, Lam 1987, 1988, Chang and Shapir 1988, Madras et al 1988, 1990, Gaunt and Flesia 1990) have studied one or more versions of the cycle model. In addition, Gaunt and Flesia (1990) and Madras et al (1990) have studied the reduced limiting free energy of a near-neighbour contact model. (Two vertices form a contact if they are non-bonded near-neighbours.)

Yet another model is associated with lattice trees. Work by Lubensky and Isaacson (1979) first suggested that cycles are relatively unimportant in determining the universality class of branched polymers. This conclusion has been verified numerically (see
e.g. Seitz and Klein 1981, Duarte and Ruskin 1981, Gaunt et al 1982) and has led to lattice trees being considered as a useful model of branched polymers in dilute solution in the good solvent regime. However, lattice trees may also be used as a model of a collapsing branched polymer. They have the advantage of simplicity in that instead of the plethora of models associated with lattice animals, there is just one lattice tree model. Clearly, all the cycle models are irrelevant for trees and amongst the nearneighbour fugacity models, only the contact model is non-trivial. Furthermore, the trees must be weakly embedded in the underlying lattice since for strongly embedded trees the number of contacts is zero by definition. Lastly, since the number of sites (n) and the number of bonds (b) in a tree are trivially related by $b=n-1$, it is immaterial whether the size of the tree is classified by its site or bond content. Thus, the one and only tree model is described by a near-neighbour contact fugacity, with the lattice trees weakly embedded in the lattice and their size classified by their site content, say. We refer to this model as the t-model.

The partition function of the t-model is defined by

$$
\begin{equation*}
Z_{n}(\beta)=\sum_{\lambda} t_{n}(\lambda) \mathrm{e}^{\beta \lambda} \tag{1.1}
\end{equation*}
$$

where $t_{n}(\lambda)$ is the number of weakly embedded trees with n sites and λ near-neighbour contacts, and e^{β} is the contact fugacity. We note that $\beta>0$ corresponds to attractive interactions and $\beta<0$ to repulsive interactions. We define the reduced free energy by

$$
\begin{equation*}
F_{n}(\beta)=n^{-1} \log Z_{n}(\beta) \tag{1.2}
\end{equation*}
$$

and the reduced limiting free energy by

$$
\begin{equation*}
\mathscr{F}(\beta)=\lim _{n \rightarrow \infty} F_{n}(\beta) \tag{1.3}
\end{equation*}
$$

For a d-dimensional hypercubic lattice, Madras et al (1990) have proved a number of rigorous results relating to $\mathscr{F}(\beta)$, which we now summarize.

First, the limit in (1.3) exists for $-\infty \leqslant \beta<\infty$, and $\mathscr{F}(\beta)$ is monotone, nondecreasing, convex and continuous for $-\infty<\beta<\infty$. If Λ_{0} and λ_{0} are the growth constants for strongly and weakly embedded trees, respectively, then

$$
\begin{equation*}
\mathscr{F}(-\infty)=\log \Lambda_{0} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{F}(0)=\log \lambda_{0} \tag{1.5}
\end{equation*}
$$

although there is no proof that

$$
\begin{equation*}
\lim _{\beta \rightarrow-\infty} \mathscr{F}(\beta)=\log \Lambda_{0} \tag{1.6}
\end{equation*}
$$

For $\beta>0, \mathscr{F}(\beta)$ is bounded below and above as follows

$$
\begin{equation*}
\max \{\mathscr{F}(0),(d-1) \beta\} \leqslant \mathscr{F}(\beta) \leqslant \mathscr{F}(0)+(d-1) \beta . \tag{1.7}
\end{equation*}
$$

Dividing (1.7) by β and letting $\beta \rightarrow \infty$ gives

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} \mathscr{F}(\beta) / \beta=d-1 \tag{1.8}
\end{equation*}
$$

and, moreover, there is an asymptotic line

$$
\begin{equation*}
L(\beta)=(d-1) \beta+S \tag{1.9}
\end{equation*}
$$

such that $\lim _{\mathcal{\beta} \rightarrow \infty}\{\mathscr{F}(\beta)-L(\beta)\}=0$. Physically, S is interpreted as the reduced limiting entropy of the compact phase. It turns out that there are exponentially many maximally compact trees which implies that S is strictly positive. In fact, it can be proved that

$$
\begin{equation*}
\pi^{-d} \int_{0}^{\pi} \ldots \int_{0}^{\pi} \log \left(2 d-2 \sum_{i=1}^{d} \cos \alpha_{i}\right) \mathrm{d} \alpha_{1} \ldots \mathrm{~d} \alpha_{d} \leqslant S \leqslant d \log d-(d-1) \log (d-1) . \tag{1.10}
\end{equation*}
$$

So, in particular, for the square lattice

$$
\begin{equation*}
(4 \mathscr{C} / \pi=) 1.166 \ldots \leqslant S \leqslant 1.386 \ldots \tag{1.11}
\end{equation*}
$$

where \mathscr{C} is Catalan's constant, and for the simple cubic lattice

$$
\begin{equation*}
1.673 \ldots \leqslant S \leqslant 1.909 \ldots \tag{1.12}
\end{equation*}
$$

In section 2, we compare the above rigorous results with numerical estimates of $\mathscr{F}(\beta)$ for the square and simple cubic lattices. As expected, $\mathscr{F}(\beta)$ is rather smooth and we have been unable to detect any sign of the singularity which is expected to occur for some value of $\beta=\beta_{\mathrm{c}}>0$ corresponding to the collapse transition. In order to locate the transition point, β_{c}, we study the specific heat in section 3. Numerical estimates of the cross-over exponent, ϕ_{0}, are given in both two and three dimensions. We conclude, in section 4 , with a summary and discussion of our results.

Our numerical estimates are based on a knowledge of $Z_{n}(\beta)$ for all $n \leqslant N$. They are given in appendix 1 up to $N=19$ on the square and diamond lattices, $N=17$ on the simple cubic lattice and $N=15$ on the body-centred cubic lattice. They were obtained from exact enumeration data derived by Martin (1990) using combinatorial techniques invented by Sykes (1986a, b, c, d). These data have already been given by Madras et al (1990) for the square and simple cubic lattices. The data for the other two lattices will appear in a future publication. In appendix 2 , we give some data for bond and site trees.

2. Free energy

In this section, we report numerical estimates for the β-dependence of the reduced limiting free energy of the square and simple cubic lattices, and compare these estimates with the rigorous results described in section 1.

We begin by using the data given in appendix 1 to calculate the reduced free energy $F_{n}(\beta)$, defined in (1.2), for values of β in the interval $-4 \leqslant \beta \leqslant 6$. The results for the simple cubic lattice are plotted in figure 1 . The corresponding plot for the square lattice is very similar.

The reduced limiting free energy $\mathscr{F}(\beta)$ is the $n \rightarrow \infty$ limit of these curves and must lie somewhere between the rigorous lower and upper bounds given in the last section. These bounds are shown in figure 1 for the simple cubic lattice and have been plotted using the numerical estimates (Gaunt et al 1982)

$$
\begin{equation*}
\log \Lambda_{0}=2.061 \pm 0.007 \quad \log \lambda_{0}=2.351 \pm 0.007 \tag{2.1}
\end{equation*}
$$

We note for use later that the corresponding estimates for the square lattice are (Gaunt et al 1982)

$$
\begin{equation*}
\log \Lambda_{0}=1.334 \pm 0.002 \quad \log \lambda_{0}=1.637 \pm 0.002 \tag{2.2}
\end{equation*}
$$

Figure 1. The reduced free energy, $F_{n}(\beta)$, of the simple cubic lattice or $n=3-17$. Upper and lower bounds to $\mathscr{F}(\beta)$ are included.

It is seen from figure 1 that for values of $n \leqslant 17$ on the simple cubic lattice, the $F_{n}(\beta)$ curves lie entirely outside the region delineated by the bounds and hence considerable extrapolation is required in order to estimate $\mathscr{F}(\beta)$, especially for large β (i.e. low temperatures).

The extrapolation methods which we have found most useful are the ratio and Padé approximant techniques (Gaunt and Guttmann 1974). The application of these techniques to problems of this kind has been described in detail elsewhere (Gaunt and Flesia 1990, Madras et al 1990). Estimates of $\mathscr{F}(\beta)$ from these two methods agree well with each other but the ratio estimates are usually more precise. For $\beta \leqslant 0$ and for small positive values of β, the results are very satisfactory. However, both methods rapidly become less useful for larger values of β and for $\beta \geqslant 1.5$ (square) and $\beta \geqslant 1$ (simple cubic) they fail to provide estimates of any reliability.

Our best estimates for the square and simple cubic lattices are tabulated in table 1 and plotted in figures 2 and 3, respectively. Upper and lower bounds to $\mathscr{F}(\beta)$ and to the asymptotic line $L(\beta)$ are given as continuous and dashed curves, respectively.

For $\beta \leqslant 0$, our results suggest very strongly that equation (1.6), for which there is no proof, is in fact correct, i.e. $\mathscr{F}(\beta)$ is asymptotic to $\log \Lambda_{0}$ as $\beta \rightarrow-\infty$. For $\beta>0$, our results are consistent with a rather rapid approach to the asymptote $L(\beta)$. We have tried to estimate the limiting entropy S of the compact phase from the behaviour of $\{\mathscr{F}(\beta)-(d-1) \beta\}$ for increasing values of $\beta>0$. This quantity is given in table 1 and suggests a value of S for the square and simple cubic lattices close or equal to the lower bounds in (1.11) and (1.12), respectively.

Table 1. Estimates of the limiting free energy $\mathscr{F}(\beta)$ and $\mathscr{F}(\beta)-(d-1) \beta$ for the square and simple cubic lattices.

β	Square		Simple cubic	
	$\mathscr{F}(\beta)$	$\mathscr{F}(\beta)-\beta$	$\mathscr{F}(\beta)$	$\mathscr{F}(\beta)-2 \beta$
-4.0	1.339 ± 0.002		2.0647 ± 0.0005	
-3.5	1.342 ± 0.002		2.0677 ± 0.0007	
-3.0	1.348 ± 0.002		2.0728 ± 0.0008	
-2.5	1.356 ± 0.002		2.0811 ± 0.0008	
-2.0	1.371 ± 0.001		2.0948 ± 0.0009	
-1.5	1.396 ± 0.001		2.118 ± 0.005	
-1.0	1.439 ± 0.001		2.157 ± 0.001	
-0.5	1.513 ± 0.001		2.225 ± 0.001	
0	1.637 ± 0.002	1.637 ± 0.002	2.351 ± 0.007	2.351 ± 0.007
0.1	1.669 ± 0.002	1.569 ± 0.002	2.395 ± 0.002	2.195 ± 0.002
0.2	1.707 ± 0.002	1.507 ± 0.002	2.445 ± 0.004	2.045 ± 0.004
0.3	1.749 ± 0.002	1.449 ± 0.002	2.509 ± 0.007	1.909 ± 0.007
0.4	1.797 ± 0.003	1.397 ± 0.003	2.59 ± 0.01	1.79 ± 0.01
0.5	1.850 ± 0.005	1.350 ± 0.005	2.68 ± 0.02	1.68 ± 0.02
0.6	1.906 ± 0.006	1.306 ± 0.006	2.79 ± 0.04	1.59 ± 0.04
0.7	1.969 ± 0.007	1.269 ± 0.007	2.90 ± 0.08	1.50 ± 0.08
0.8	2.032 ± 0.009	1.232 ± 0.009	3.16 ± 0.15	1.56 ± 0.15
0.9	2.10 ± 0.02	1.20 ± 0.02	3.30 ± 0.20	1.50 ± 0.20
1.0	2.16 ± 0.04	1.16 ± 0.04	3.50 ± 0.25	1.50 ± 0.25
1.1	2.23 ± 0.04	1.13 ± 0.04		
1.2	2.29 ± 0.07	1.09 ± 0.07		
1.3	2.36 ± 0.10	1.06 ± 0.10		
1.4	2.44 ± 0.15	1.04 ± 0.15		
1.5	2.50 ± 0.20	1.0 ± 0.20		

Figure 2. Numerical estimates of the reduced limiting free energy $\bar{F}(\beta)$ on the square lattice. Upper and lower bounds to $\mathscr{F}(\beta)$ and the asymptotic line $L(\beta)$, are included.

Figure 3. As figure 2 but on the simple cubic lattice.

Finally, we note that the plots of $\mathscr{F}(\beta)$ in figures 2 and 3 are very smooth and give no hint of the collapse transition which is expected to occur for some value of $\beta=\beta_{c}>0$. Of course, we expect that for $\beta<0$, corresponding to repulsive interactions, $\mathscr{F}(\beta)$ will be analytic.

3. Specific heat

Rather than attempt numerical differentiation of $\mathscr{F}(\beta)$ in order to obtain the specific heat, we follow the approach taken by other workers (for example, Chang and Shapir 1988) and differentiate the reduced free energy $F_{n}(\beta)$ before taking the $n \rightarrow \infty$ limit. Accordingly, we define the specific heat either through

$$
\begin{equation*}
\mathscr{C}_{n}^{\prime}=\mathrm{d}^{2} F_{n} / \mathrm{d} \beta^{2}=\left(\left\langle\lambda^{2}\right\rangle-\langle\lambda\rangle^{2}\right) / n \tag{3.1}
\end{equation*}
$$

or through

$$
\begin{equation*}
\mathscr{C}_{n}=\beta^{2} \mathrm{~d}^{2} F_{n} / \mathrm{d} \beta^{2} . \tag{3.2}
\end{equation*}
$$

The relative merits of these different definitions have been discussed previously by Gaunt and Flesia (1990).

In figure 4 , we plot \mathscr{C}_{n}^{\prime} against β for the square lattice for values of $n \leqslant 19$. All the curves are dominated by a single sharp peak which increases smoothly in height as n increases. Presumably this peak corresponds to the collapse transition. According to finite size scaling theory, the height h_{n}^{\prime} of this peak should scale as $n^{\alpha_{0} \phi_{0}}$, where ϕ_{0} is the cross-over exponent and α_{0} is the specific heat exponent. Assuming the hyper-scaling relation (Derrida and Herrmann 1983) $2-\alpha_{0}=1 / \phi_{0}$, gives the height scaling as

$$
\begin{equation*}
h_{n}^{\prime} \sim n^{2 \phi_{n}-1} \quad n \rightarrow \infty . \tag{3.3}
\end{equation*}
$$

Figure 4. The specific heat, $\mathscr{C}_{\ldots}^{\prime}(\beta)$, of the square lattice for $n=4-19$.

To estimate ϕ_{0}, we have calculated

$$
\begin{equation*}
\phi_{0, n}=\frac{1}{2}\left[\frac{\log \left(h_{n}^{\prime} / h_{n-1}^{\prime}\right)}{\log (n / n-1)}+1\right] \tag{3.4}
\end{equation*}
$$

which should approach ϕ_{0} as $n \rightarrow \infty$. In figure 5 , we have plotted $\phi_{0, n}$ against $1 / n$, together with the extrapolants (Gaunt and Guttmann 1974) calculated from alternate pairs of points. We estimate for the two-dimensional square lattice

$$
\begin{equation*}
\phi_{0}=0.60 \pm 0.03 \quad d=2 . \tag{3.5}
\end{equation*}
$$

In three dimensions, a similar analysis yields figure 6 and

$$
\begin{equation*}
\phi_{0}=0.82 \pm 0.03 \quad d=3 . \tag{3.6}
\end{equation*}
$$

The estimate in (3.6) is for the body-centred cubic lattice, although it is also consistent with less well-converged results for the simple cubic and diamond lattices. The plots of \mathscr{C}_{n}^{\prime} against β for the body-centred cubic lattice are given in figure 7 . For $n=15$ the curve has two distinct peaks and this is the first time that such behaviour has been reported for the function $\mathscr{C}_{n}^{\prime}(\beta)$. We note that it does not occur for any other lattice, at least for the values of n that are currently available. Clearly, the height of the larger peak in figure 7 corresponds to the collapse and has been used in (3.4) to calculate $\phi_{0.15}$ for the body-centred cubic lattice. It is possible that the smaller peak corresponds to a roughening transition (Dickman and Schieve 1984), which takes place at a lower temperature, T_{r}, than the collapse transition at T_{c}. Anomalous low temperature

Figure 5. $\phi_{0, n}$ and their alternate extrapolants plotted against $1 / n$ for the square lattice. Our best estimate of ϕ_{0} is indicated on the right-hand axis.

Figure 6. As figure 5 but for the body-centred cubic lattice (O), together with $\phi_{0, n}$ for the simple cubic $(+)$ and diamond ($\boldsymbol{\square}$) lattices.
behaviour may be highlighted by calculating the specific heat \mathscr{C}_{n} using the alternative definition in (3.2); the β^{2}-factor has the effect of diminishing the collapse relative to the roughening. Although evidence of roughening is found for all lattices in both two and three dimensions, the results for \mathscr{C}_{n} are not easy to interpret and we refrain from presenting them here.

According to finite size scaling theory, the value of β at which \mathscr{C}_{n}^{\prime} has its principal maximum, namely $\beta_{\max }(n)$, should approach β_{c} as n increases like

$$
\begin{equation*}
\beta_{\max }(n)=\beta_{\mathrm{c}}+A n^{-\phi_{n}}+\ldots \quad n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

where A is a constant amplitude. In figure 8 , we plot $\beta_{\max }(n)$ against $1 / n^{\phi_{0}}$ for several lattices in two and three dimensions using the central value of ϕ_{0} in (3.5) and (3.6), respectively. In all cases, after some initial irregularities, the curves become quite smooth. For the square lattice, the curve passes through a minimum as n increases and we have tried to represent such behaviour by including in (3.7) an additional term as in

$$
\begin{equation*}
\beta_{\max }(n)=\beta_{\mathrm{c}}+A n^{-\phi_{0}}-B n^{-1}+\ldots \quad n \rightarrow \infty . \tag{3.8}
\end{equation*}
$$

In fact, the presence of such an analytic term is expected for all lattices on general theoretical grounds. Assuming the values of ϕ_{0} given in (3.5) and (3.6), we have solved (3.8) using successive triplets of $\beta_{\text {max }}(n)$-values. This procedure gives sequences of estimates, $\beta_{\mathrm{c}}(n)$, which we have tried to extrapolate linearly against $1 / n$. For the diamond lattice, the data are too poorly converged for us to extract any estimate of

Figure 7. The specific heat, $\mathscr{C}_{n}^{\prime}(\beta)$, of the body-centred cubic lattice for $n=4-15$.
β_{c}. For the other lattices, we obtain the rather crude estimates

$$
\begin{align*}
\beta_{\mathrm{c}}=1 / T_{\mathrm{c}} & =0.5 \pm 0.1 & & \text { (square) } \\
& =0.35 \pm 0.3 & & \text { (simple cubic) } \\
& =0.33 \pm 0.1 & & \text { (body-centred cubic). } \tag{3.9}
\end{align*}
$$

The central estimates in (3.9) suggest that, before it collapses, a two-dimensional system has to be cooled to a lower temperature than one in three dimensions. This conclusion was also reached for the C-model, i.e. a cycle model of lattice animals, strongly embedded in the lattice with site counting (Derrida and Herrmann 1983, Lam 1987, 1988). The coordination numbers of the embedding lattice are also important. In three dimensions, it is expected that a system on the body-centred cubic lattice will collapse earlier than the same system on the simple cubic lattice (as the results in (3.9) show). This is because near-neighbours are more abundant in the former case.

4. Summary and discussion

In this paper we have investigated numerically, for the first time, the collapse that occurs in a lattice tree model of branched polymers. In section 1, we summarized some rigorous results (Madras et al 1990), including upper and lower bounds, for the

Figure 8. $\beta_{\max }(n)$ plotted against $1 / n^{0.60}$ for the square lattice and against $1 / n^{0.82}$ for the simple cubic and body-centred cubic lattices.
temperature dependence of the reduced limiting free energy $\mathscr{F}(\beta)$. In addition, we reported in the appendices some new exact enumeration results for lattice trees, derived from data obtained by J L Martin and M F Sykes (see Madras et al 1990 and to be published). In section 2, these data were used to obtain numerical estimates of $\mathscr{F}(\beta)$ which compare very well for $\beta \leqslant 0$ and satisfactorily for small $\beta>0$ with the rigorous bounds. Although there is no proof, it appears very likely that $\mathscr{F}(\beta)$ is asymptotic to $\log \Lambda_{0}$ as $\beta \rightarrow-\infty$. In addition, our numerical results support the conjecture that, for the square and simple cubic lattices, the reduced limiting entropy of the compact phase is equal to (or at least very close to) the rigorous lower bound in (1.10).

From the specific heat, we have obtained in section 3 estimates of the collapse transition T_{c} and the cross-over exponent ϕ_{0} in two and three dimensions. Our best estimates for ϕ_{0} are around 0.60 in two dimensions and 0.82 in three dimensions. Given ϕ_{0}, the specific heat exponent α_{0} is given by the hyper-scaling relation (see Derrida and Herrmann 1983, Chang and Shapir 1988) $\alpha_{0}=2-\left(1 / \phi_{0}\right)$.

These values of the exponent ϕ_{0} are not in agreement with the Flory exponents (Daoud et al 1983) of $\phi_{\mathrm{F}}=\frac{5}{6}=0.833 \ldots(d=2)$ and $\phi_{\mathrm{F}}=\frac{11}{16}=0.6875(d=3)$. This is not particularly surprising since the upper tricritical dimension for this problem is $d_{\mathrm{t}}=6$. It is perhaps more surprising that the Flory theory does not even predict the increase of ϕ_{0} when going from $d=2$ to $d=3$.

The above values of ϕ_{0} for lattice trees (t-model) may be compared with numerical estimates of ϕ for the C-model. In two dimensions, the best estimate is $\phi=0.657 \pm 0.025$ obtained by Derrida and Herrmann (1983) using transfer matrices on finite strips together with finite size scaling. In three dimensions, Lam (1988) has used Monte

Carlo data to estimate $\phi \approx 0.814$, while exact enumeration data give $\phi \approx 1$ (Chang and Shapir 1988). These results indicate that the t-model and C-model may be in different universality classes, although the evidence is not conclusive.

The two peaks in $\mathscr{C}_{15}^{\prime}(\beta)$ for the body-centred cubic lattice and the anomalous low temperature behaviour of $\mathscr{C}_{n}(T)$ for both two- and three-dimensional lattices have been interpreted in terms of a possible roughening transition. The possibility of a roughening transition was first suggested by Dickman and Schieve (1984) for the C-model of collapse in lattice animals. Evidence which may indicate roughening in the C-model has been obtained for two- and three-dimensional lattices using both Monte Carlo techniques (Dickman and Schieve 1984, Lam 1987) and exact enumeration data (Gaunt and Flesia 1990). Anomalous low temperature behaviour, possibly related to roughening, has been observed therefore in both a lattice animal cycle (C-) model and the lattice tree contact (t-) model in both two and three dimensions.

Acknowledgments

We have benefited from discussions with all our colleagues in the King's College Statistical Physics Group. Particular thanks are due to J L Martin and M F Sykes who together derived the exact enumeration data from which the data in the appendix were derived. We are grateful to G S Joyce for evaluating the integral in (1.10) when $d=3$. We also acknowledge stimulating discussions with S G Whittington. This research was financially supported, in part, by the SERC (grant number GR/G 05834).

Appendix 1. Partition functions $\bar{Z}_{n}(\bar{\beta})$ with $x=\mathrm{e}^{\boldsymbol{\beta}}$

Square

$$
\begin{aligned}
& Z_{1}=1 \quad Z_{2}=2 \quad Z_{3}=6 \\
& Z_{4}=18+4 x \quad Z_{5}=55+32 x \quad Z_{6}=174+160 x+30 x^{2} \\
& Z_{7}=570+672 x+332 x^{2} \quad Z_{8}=1908+2712 x+2030 x^{2}+336 x^{3} \\
& Z_{9}=6473+10880 x+9972 x^{2}+4064 x^{3}+192 x^{4} \\
& Z_{10}=22202+43220 x+46004 x^{2}+27392 x^{3}+6062 x^{4} \\
& Z_{11}=76886+169784 x+207444 x^{2}+148728 x^{3}+63852 x^{4}+5696 x^{5} \\
& Z_{12}=268352+662424 x+912378 x^{2}+755936 x^{3}+435330 x^{4}+111112 x^{5}+4830 x^{6} \\
& Z_{13}=942651+2573976 x+3923948 x^{2}+3718712 x^{3}+2497462 x^{4}+1047168 x^{5} \\
& +173400 x^{6} \\
& Z_{14}=3329608+9967932 x+16621216 x^{2}+17685192 x^{3}+13472960 x^{4}+7173256 x^{5} \\
& +2280164 x^{6}+196608 x^{7} \\
& Z_{15}=11817582+38489344 x+69641568 x^{2}+81730120 x^{3}+69928992 x^{4} \\
& +43064560 x^{5}+19087660 x^{6}+4218176 x^{7}+180674 x^{8}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{16}=42120340+148278528 x+289148184 x^{2}+370021256 x^{3}+349897084 x^{4} \\
&+243682636 x^{5}+129300260 x^{6}+45287440 x^{7}+6961342 x^{8}+100352 x^{9} \\
& Z_{17}=150682450+570197440 x+1191271268 x^{2}+1649049272 x^{3}+1699165082 x^{4} \\
&+1320197000 x^{5}+795256592 x^{6}+355393128 x^{7}+99763798 x^{8} \\
&+9630560 x^{9} \\
& Z_{18}=540832274+2189348656 x+4876431544 x^{2}+7252368728 x^{3} \\
&+8068090292 x^{4}+6885986552 x^{5}+4626204916 x^{6}+2408178984 x^{7} \\
&+922980400 x^{8}+197901280 x^{9}+11189428 x^{10} \\
& Z_{19}=1946892842+8395558272 x+19853269060 x^{2}+31536512904 x^{3} \\
&+37628498868 x^{4}+34838434432 x^{5}+25760261240 x^{6} \\
&+15095548080 x^{7}+6936931892 x^{8}+2230866664 x^{9}+359409332 x^{10} \\
&+9934752 x^{11} .
\end{aligned}
$$

Diamond

$$
\begin{aligned}
& Z_{1}=1 \quad Z_{2}=2 \quad Z_{3}=6 \quad Z_{4}=22 \quad Z_{5}=91 \\
& Z_{6}=396+12 x \quad Z_{7}=1782+144 x \quad Z_{8}=8186+1248 x \\
& Z_{9}=38199+9120 x+192 x^{2} \quad Z_{10}=180544+60504 x+3318 x^{2}+128 x^{3} \\
& Z_{11}=862642+377520 x+37836 x^{2}+2048 x^{3} \\
& Z_{12}=4161378+2259888 x+348966 x^{2}+26664 x^{3} \\
& Z_{13}=20245844+13148256 x+2820900 x^{2}+294464 x^{3}+8064 x^{4} \\
& Z_{14}=99248728+74993100 x+20851026 x^{2}+2896056 x^{3}+162816 x^{4}+5292 x^{5} \\
& Z_{15}=489826224+421826784 x+144575364 x^{2}+25871376 x^{3}+2260878 x^{4}
\end{aligned}
$$

$$
+105840 x^{5}
$$

$Z_{16}=2431989718+2349583788 x+956672442 x^{2}+213316024 x^{3}+25643988 x^{4}$ $+1770072 x^{5}$
$Z_{17}=12139384729+12996154944 x+6114841356 x^{2}+1646561296 x^{3}$ $+255815532 x^{4}+23851032 x^{5}+577584 x^{6}$
$Z_{18}=60883076058+71522393940 x+38082029826 x^{2}+12049148736 x^{3}$ $+2318999586 x^{4}+280161948 x^{5}+13708980 x^{6}+320760 x^{7}$
$Z_{19}=306652125954+392142612648 x+232532813844 x^{2}+84481367760 x^{3}$
$+19506872034 x^{4}+2939600352 x^{5}+227075520 x^{6}+7698240 x^{7}$.

Simple cubic

$Z_{1}=1 \quad Z_{2}=3 \quad Z_{3}=15 \quad Z_{4}=83+12 x$

$$
\begin{aligned}
& Z_{5}=486+192 x \quad Z_{6}=2967+1992 x+270 x^{2} \\
& Z_{7}=18748+17616 x+5700 x^{2}+400 x^{3} \\
& Z_{8}=121725+145872 x+73902 x^{2}+16104 x^{3}+384 x^{5} \\
& Z_{9}=807381+1173216 x+785448 x^{2}+299472 x^{3}+29280 x^{4}+9216 x^{5} \\
& Z_{10}=5447203+9296964 x+7608912 x^{2}+3986592 x^{3}+970845 x^{4}+167760 x^{5} \\
& +33024 x^{6} \\
& Z_{11}=37264974+73034952 x+70171248 x^{2}+45126408 x^{3}+17533428 x^{4} \\
& +4004592 x^{5}+919680 x^{6}+104880 x^{7} \\
& Z_{12}=257896500+570616752 x+627603288 x^{2}+469676808 x^{3}+240021897 x^{4} \\
& +80393760 x^{5}+19664922 x^{6}+4958880 x^{7}+94500 x^{9} \\
& Z_{13}=1802312605+4442485104 x+5494079484 x^{2}+4654566416 x^{3} \\
& +2850265746 x^{4}+1261429248 x^{5}+393237032 x^{6}+117012768 x^{7} \\
& +13714224 x^{8}+3024000 x^{9} \\
& Z_{14}=12701190885+34507622736 x+47335340712 x^{2}+44629965192 x^{3} \\
& +31267320963 x^{4}+16759746024 x^{5}+6685661748 x^{6} \\
& +2258748744 x^{7}+529155132 x^{8}+87143832 x^{9}+12835236 x^{10} \\
& Z_{15}=90157130289+267647434752 x+402881113224 x^{2}+417554922912 x^{3} \\
& +326433287382 x^{4}+201109725768 x^{5}+97191844656 x^{6} \\
& +38621502576 x^{7}+12136805082 x^{8}+2793699792 x^{9}+490539864 x^{10} \\
& +59724096 x^{11} \\
& Z_{16}=644022007040+2073965899752 x+3396362370270 x^{2}+3832392373520 x^{3} \\
& +3291565921095 x^{4}+2263013083236 x^{5}+1262410265762 x^{6} \\
& +585705055176 x^{7}+222946129560 x^{8}+67977369624 x^{9} \\
& +15138726168 x^{10}+3075171048 x^{11}+131441760 x^{12}+37544640 x^{13} \\
& Z_{17}=4626159163233+16061510248344 x+28413305010864 x^{2} \\
& +34637466582840 x^{3}+32323821031008 x^{4}+24369368927352 x^{5} \\
& +15197610620388 x^{6}+8021550231096 x^{7}+3559862088072 x^{8} \\
& +1320293720400 x^{9}+383349428328 x^{10}+93494805744 x^{11} \\
& +14202593592 x^{12}+1465427712 x^{13}+178124544 x^{14} \text {. }
\end{aligned}
$$

Body-centred cubic
$Z_{1}=1 \quad Z_{2}=4 \quad Z_{3}=28 \quad Z_{4}=204+48 x$
$Z_{5}=1562+864 x+144 x^{2} \quad Z_{6}=12544+10824 x+4032 x^{2}+960 x^{3}$
$Z_{7}=104756+120048 x+71136 x^{2}+26608 x^{3}+7344 x^{4}$

$$
\begin{aligned}
& Z_{8}=900168+1279344 x+1001412 x^{2}+524752 x^{3}+220776 x^{4}+57024 x^{5}+2816 x^{6} \\
& Z_{9}=7901843+13415424 x+12729888 x^{2}+8478544 x^{3}+4572576 x^{4}+1873584 x^{5} \\
& +552088 x^{6}+44160 x^{7} \\
& Z_{10}=70545284+139356264 x+154046760 x^{2}+121832944 x^{3}+78940680 x^{4} \\
& +41397648 x^{5}+18049700 x^{6}+5309952 x^{7}+798288 x^{8} \\
& Z_{i \mathrm{i}}=638589820+1438759872 x+1810272744 x^{2}+1637483904 x^{3} \\
& +1220529240 x^{4}+758618640 x^{5}+407983040 x^{6}+176859312 x^{7} \\
& +58034952 x^{8}+11236304 x^{9}+378000 x^{10} \\
& Z_{12}=5847741388+14797602912 x+20839131300 x^{2}+21115886128 x^{3} \\
& +17597289060 x^{4}+12444614544 x^{5}+7723757976 x^{6} \\
& +4128654192 x^{7}+1853249760 x^{8}+655744368 x^{9}+150059244 x^{10} \\
& +14405520 x^{11} \\
& Z_{13}=54073952472+151836363792 x+236264310264 x^{2}+264433527616 x^{3} \\
& +242265305232 x^{4}+189919078224 x^{5}+131635620752 x^{6} \\
& +80760938880 x^{7}+43631955612 x^{8}+20184138528 x^{9} \\
& +7592349408 x^{10}+2024575056 x^{11}+307128840 x^{12}+12147840 x^{13} \\
& Z_{14}=504210769416+1555713958704 x+2648010933408 x^{2}+3238334740208 x^{3} \\
& +3226458327804 x^{4}+2757673722048 x^{5}+2091825408512 x^{6} \\
& +1422907772304 x^{7}+871605859524 x^{8}+475787185832 x^{9} \\
& +226671366192 x^{10}+90147469728 x^{11}+27117230596 x^{12} \\
& +5630305200 x^{13}+403790640 x^{14}+39655424 x^{15} \\
& Z_{15}=4735591774476+15925717164240 x+29414288060664 x^{2} \\
& +38968278158176 x^{3}+41882015193744 x^{4}+38610300779664 x^{5} \\
& +31625742605544 x^{6}+23384443224576 x^{7}+15743620564572 x^{8} \\
& +9646044839008 x^{9}+5329876746336 x^{10}+2611080091392 x^{11} \\
& +1088802260900 x^{12}+367415527152 x^{13}+89064438480 x^{14} \\
& +12584378528 x^{15}+1047822336 x^{16}+28311552 x^{18} \text {. }
\end{aligned}
$$

Appendix 2. Bond and site trees

Using the data in appendix 1 , we can derive the number of trees with n sites, weakly and strongly embedded in the lattice, i.e. bond and site trees, respectively. From the definition of $Z_{n}(\beta)$ in (1.1), we see that the coefficient independent of x is the number of strongly embedded trees, and that the number of weakly embedded trees is obtained
by putting $x=1$ and summing. This procedure supplements the previously known data as follows:

Square. The bond trees given by Whittington et al (1983) for $n \leqslant 15$ are supplemented by

$$
\begin{aligned}
1624797422 & (n=16) & 7840606590 & (n=17) \\
37979513054 & (n=18) & 184592118338 & (n=19)
\end{aligned}
$$

while the site trees given by Duarte and Ruskin (1981), Gaunt et al (1982) and Whittington et al (1983) for $n \leqslant 17$ extend as

$$
540832274 \quad(n=18) \quad 1946892842 \quad(n=19) .
$$

Diamond. Site trees have been given by Duarte and Ruskin (1981) for $n \leqslant 12$ and continue as

$$
\begin{aligned}
20245844 & (n=13) & 99248728 & (n=14) \\
489826224 & (n=15) & 2431989718 & (n=16) \\
12139384729 & (n=17) & 60883076058 & (n=18) \\
306652125954 & (n=19) . & &
\end{aligned}
$$

Bond trees for $n \leqslant 19$ are given in table 2.
Simple cubic. Bond and site trees given by both Gaunt et al (1982) and Whittington et al (1983) for $n \leqslant 11$ are extended by

2270927307	$(n=12)$	21032126627	$(n=13)$
196774731204	$(n=14)$	1857077730393	$(n=15)$
17658743358651	$(n=16)$	169023638003517	$(n=17)$

Table 2. Bond trees for the diamond and body-centred cubic lattices.

n	t_{n} (diamond)	t_{n} (body-centred cubic)
1	1	1
2	2	4
3	6	28
4	22	252
5	91	2570
6	408	28360
7	1926	329892
8	9434	3986292
9	47511	49568107
10	244494	630277520
11	1280046	8158745828
12	6796896	107168136392
13	36517528	1424941392516
14	198157018	19142538495540
15	1084466466	259435941941340
16	5978976032	
17	33177186473	
18	185149839834	
19	1038490166352	

for bond trees, and for site trees by

257896500	$(n=12)$	1802312605	$(n=13)$
12701190885	$(n=14)$	90157130289	$(n=15)$
644022007040	$(n=16)$	4626159163233	$(n=17)$.

Body-centred cubic. Site trees have been given by Duarte and Ruskin (1981) for $n \leqslant 9$ and continue as

70545284	$(n=10)$	638589820	$(n=11)$
5847741388	$(n=12)$	54073952472	$(n=13)$
504210769416	$(n=14)$	4735591774476	$(n=15)$.

Bond trees for $n \leqslant 15$ are given in table 2 .

References

Binder P M, Owczarek A L, Veal A R and Yeomens J M 1990 J. Phys. A: Math. Gen. 23 L975
Chang I S and Shapir Y 1988 Phys. Rev. B 386736
Daoud M, Pincus P, Stockmayer W H and Witten T Jr 1983 Macromol. 161833
Derrida B and Herrmann H J 1983 J. Physique 441365
Dhar D 1987 J. Phys. A: Math. Gen. 20 L847
Dickman R and Schieve W C 1984 J. Physique 451727
Duarte J A M S and Ruskin H J 1981 J. Physique 421585
Gaunt D S and Flesia S 1990 Physica A 168602
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Ácademic) pp 181-243
Gaunt D S, Sykes M F, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 153209
Lam P M 1987 Phys. Rev. B 366988
-_ 1988 Phys. Rev. B 382813
Lubensky T C and Isaacson J 1979 Phys. Rev. A 202130
Madras N, Soteros C E and Whittington S G 1988 J. Phys. A: Math. Gen, 214617
Madras N, Soteros C E, Whittington S G, Martin J L, Sykes M F, Flesia S and Gaunt D S 1990 J. Phys. A: Math. Gen. 235327
Martin J L 1990 J. Stat. Phys. 58749
Seitz W A and Klein D J 1981 J. Chem. Phys. 755190
Sykes M F 1986a J. Phys. A: Math. Gen. 191007
_— 1986b J. Phys. A: Math. Gen. 191027
—— 1986c J. Phys. A: Math. Gen. 192425
_- 1986d J. Phys. A: Math. Gen. 192431
Whittington S G, Torrie G M and Gaunt D S 1983 J. Phys. A: Math. Gen. 161695

