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J. Phys. A: Math. Gen. 24 (1991) 3655-3670. Printed in the U K  

The collapse transition for lattice trees 

D F. Gz.nt and s F!esia 
Department of Physics, King's College, Strand, London WC2R ZLS, U K  

Received 25 March 1991 

Abstract. We consider a lattice tree model for the collapse of dilute branched polymers i n  
thegood solvent regime in which the collapse is driven bya near-neighbour contact iugacity. 
We describe some rigorous results, including bounds, for the temperature dependence of 
the reduced limiting free energy and compare these resdls with numerical estimates derived 
from exact enumeration data. From the specific h a t ,  we estimate the collapse temperature 
7, and the  crowover exponent bo in two and three dimensions. We find +,,= 
0.60zt0.03 ( d = Z ) a n d  +,=0.82*0.03 ( d = 3 ) .  Finally,wespeculateon a possibleroughen- 
ing transition which may occur at a temperature T,< T,. 

1. Introduction 

Recently there has been considerable interest in the collapse of branched polymers. 
Randomly branched polymers in dilute solution in  a good solvent have been modelled 
by lattice animals (i.e. by connected subgraphs of a lattice). As the solvent quality 
decreases, or alternatively the temperature decreases, the branched polymers become 
more compact and a tricritical collapse transition is expected to occur. For linear 
polymers, the existence of an analogous transition is well documented (see, for example, 
the references cited by Derrida and Herrmann 1983). The existence of a collapse 
transition in a directed animal model has been proved by Dhar (1987). A directed 
model for linear polymers has been studied by Binder ef a/  (1990) who determined 
the location of the collapse transition exactly. 

Two basic types of lattice animal model have been proposed to study the collapse 
of branched polymers. In one of these, the collapse is driven by some kind of 
near-neighbour fugacity and in the other by a cycle fugacity. However, several variants 
of these underlying models are possible. For example, the animals may be either weakly 
embedded or strongly embedded in the lattice (i.e. subgraphs or  section graphs, 
respectively), and their size may be classified either by their site content or their bond 
content. A more extensive discussion of the various models has been given by Gaunt 
and Flesia (1990) and by Madras er a/  (1990). So far all workers (Derrida and Herrmann 
1983, Dickman and Schieve 1984, Lam 1987, 1988, Chang and Shapir 1988, Madras 
er a /  1988, 1990, Gaunt and Flesia 1990) have studied one or more versions of the 
cycle model, In addition, Gaunt and Flesia (1990) and Madras ef al( l990)  have studied 
the reduced limiting free energy of a near-neighbour confacf model. (Two vertices 
form a contact if they are non-bonded near-neighbours.) 

Yet another model is associated with lafrice rrees. Work by Lubensky and Isaacson 
(1979) first suggested that cycles are relatively unimportant in determining the univer- 
sality class of branched polymers. This conclusion has been verified numerically (see 
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e.g. Seitz and Klein 1981, Duarte and Ruskin 1981, Gaunt et al 1982) and has led to 
lattice trees being considered as a useful model of branched polymers in dilute solution 
in the good solvent regime. However, lattice trees may also be used as a model of a 
collapsing branched polymer. They have the advantage of simplicity in that instead 
of the plethora of models associated with lattice animals, there is just one lattice tree 
model. Clearly, all the cycle models are irrelevant for trees and amongst the near- 
neighbour fugacity models, only the contact model is non-trivial. Furthermore, the 
trees must be weakly embedded in the underlying lattice since for strongly embedded 
trees the number of contacts is zero by definition. Lastly, since the number of sites (n) 
and the number of bonds ( b )  in a tree are trivially related by b = n - 1, it is immaterial 
whether the size of the tree is classified by its site or bond content. Thus, the one and 
only tree model is described by a near-neighbour contact fugacity, with the lattice trees 
weakly embedded in the lattice and their size classified by their site content, say. We 
refer to this model as the t-model. 

D S Gaunt and S Nesia 

The partition function of the t-model is defined by 

Z n ( P ) = X  t&\)e’” (1.1) 

where t , (A)  is the number of weakly embedded trees with n sites and A near-neighbour 
contacts, and eo is the contact fugacity. We note that p > 0 corresponds to attractive 
interactions and p < O  to repulsive interactions. We define the reduced free energy by 

and the reduced limiting free energy by 

(1.3) 

For a d-dimensional hypercubic lattice, Madras et al (1990) have proved a number 
of rigorous results relating to 7 ( p ) ,  which we now summarize. 

<a, and 7 ( p )  is monotone, non- 
decreasing, convex and continuous for -m<p<m. If A. and A. are the growth 
constants for strongly and weakly embedded trees, respectively, then 

First, the limit in (1.3) exists for 

.F-m) = log A. ( 1.4) 

and 

sC(0) =log ho (1.5) 

*!t!?o.gh there is no proof !h*t 

lim 7 ( p )  = log A,, 
p--m 

For p > 0, S ( p )  is bounded below and above as follows 

max{%(O), ( d  - 1 ) p ) S  . F ( p ) <  9 ( 0 ) + ( d  - 1)p. (1.7) 

Dividing (1.7) by p and letting p + m  gives 

lim S ( p ) / p  = d - 1 (1.8) 
o-- 

and, moreover, there is an asymptotic line 

L ( P ) = ( d  - 1)P+ S 
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such that limo+m {S(P) - L ( p ) )  = 0. Physically, S is interpreted as the reduced limiting 
entropy of the compact phase. It turns out that there are exponentially many maximally 
compact trees which implies that S is strictly positive. In fact, it can be proved that 

d 
T - ~  . . .  /;log(2d-2 c o s a i  d a ,  . . .  d a d S S S d l o g d - ( d - l ) l o g ( d - l ) .  

i = ,  

(1.10) 

So, in particular, for the square lattice 

(4~/71=)1 .166  . . .  ~ S S 1 . 3 8 6  . . .  ( 1 . 1 1 )  

where 9 is Catalan's constant, and for the simple cubic lattice 

1.673 . . .  S S S 1 . 9 0 9  . . . _  (1.12) 

In section 2, we compare the above rigorous results with numerical estimates of 9 ( p )  
for the square and simple cubic lattices. As expected, S ( p )  is rather smooth and we 
have been unable to detect any sign of the singularity which is expected to occur for 
some value of p = pc> 0 corresponding to the collapse transition. In order to locate 
the transition point, p c ,  we study the specific heat in section 3. Numerical estimates 
of the cross-over exponent, +o,  are given in both two and three dimensions. We 
conclude, in section 4, with a summary and discussion of our results. 

Our numerical estimates are based on a knowledge of Z,,(p) for all n S N. They 
are given in appendix 1 up to N = 19 on the square and diamond lattices, N = 17 on 
the simple cubic lattice and N = 15 on the body-centred cubic lattice. They were 
obtained from exact enumeration data derived by Martin (1990) using combinatorial 
techniques invented by Sykes (1986a, b, c, d).  These data have already been given by 
Madras et a1 (1990) for the square and simple cubic lattices. The data for the other 
two lattices will appear in a future publication. In appendix 2, we give some data for 
bond and site trees. 

2. Free energy 

In this section, we report numerical estimates for the p-dependence of the reduced 
limiting free energy of the square and simple cubic lattices, and compare these estimates 
with the rigorous results described in section 1.  

We begin by using the data given in appendix 1 to calculate the reduced free energy 
F , ( p ) ,  defined in (l.Z), for values of p in the interval - 4 S p S 6 .  The results for the 
simple cubic lattice are plotted in figure 1. The corresponding plot for the square lattice 
is very similar. 

The reduced limiting free energy 3 ( p )  is the n + 00 limit of these curves and must 
lie somewhere between the rigorous lower and upper bounds given in the last section, 
These bounds are shown in figure 1 for the simple cubic lattice and have been plotted 
using the numerical estimates (Gaunt el a1 1982) 

log A" = 2.061 * 0.007 log h,,=2.351k0.007. (2.1) 

We note for use later that the corresponding estimates for the square lattice are (Gaunt 
et a1 1982) 

logAo= 1.334*0.002 log A"= 1.637*0.002. (2.2) 
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Figure 1. The reduced free energy, F,,(P),  of the simple cubic lattice or n = 3 - 1 7 .  Upper 
and lower bounds 10 S ( p )  are included. 

It is seen from figure 1 that for values of n S 17 on the simple cubic lattice, the F,,(p) 
curves lie entirely outside the region delineated by the bounds and hence considerable 
extrapolation is required in order to estimate S ( p ) ,  especially for large p (i.e. low 
temperatures). 

The extrapolation methods which we have found most useful are the ratio and 
Pad6 approximant techniques (Gaunt and Guttmann 1974). The application of these 
techniques to problems of this kind has been described in detail elsewhere (Gaunt and 
Flesia 1990, Madras era/ 1990). Estimates of S ( p )  from these two methods agree well 
with each other but the ratio estimates are usually more precise. For p s 0 and for 
small positive values of p, the results are very satisfactory. However, both methods 
rapidly become less useful for larger values .of p and for p 3 1.5 (square) and p 3 1 
(simple cubic) they fail to provide estimates of any reliability. 

Our best estimates for the square and simple cubic lattices are tabulated in table 
1 and plotted in figures 2 and 3, respectively. Upper and lower bounds to S ( p )  and 
to the asymptotic line L ( p )  are given as continuous and dashed curves, respectively. 

For p SO, our results suggest very strongly that equation (1.6), for which there is 
no proof, is in fact correct, i.e. $(p)  is asymptotic to log A. as p + -m. For p > 0, our 
results are consistent with a rather rapid approach lo the asymptote L ( p ) .  We have 
tried to estimate the limiting entropy S of the compact phase from the behaviour of 
{ S ( p )  - ( d  - l)p} for increasing values of p > 0. This quantity is given in table 1 and 
suggests a value of S for the square and simple cubic lattices close or equal to the 
lower bounds in (1.11) and (1.12), respectively. 
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Table 1. Estimates of the limiting free energy F ( p j  and F ( p ) - ( d - l j p  for the square 
and simple cubic lattices. 

P 

-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 

1.339 -t 0.002 
1.342 1 0.002 
1.34810.002 
1.35610.002 
1.371 10.001 
1.396 1 0.001 
1.439 1 0.001 
1.513+0.001 
1.637f0.002 
1.669 1 0.002 
I .707 + 0.002 
1.749 1 0.002 
1.19710.003 
1.850 i 0.005 
1.90610.006 
1.969 * 0.007 
2.032 *0.009 
2.10+0.02 
2.16-tO.04 
2.2310.04 
2.29 10.07 
2.36+0.10 
2.44 i- 0.1 5 
2.5010.20 

1.637 f0.002 
1.56910.002 
1.50710.002 

1.397f0.003 
1.350 * 0.005 
1.306 1 0.006 
1.269 + 0.007 
1.232 * 0.009 
1.2010.02 
1.1610.04 
1.1310.04 
1.0910.07 
1.06 1 0.10 
1.04+0.15 
l .Oi0.20 

1.449 + 0.002 

2.064710.0005 
2.067710.0007 
2.0728-tO.0008 
2.081 I 10.0008 

2.118*0.001 
2.15710.001 
2.225 iO.001 
2.351 f0.007 
2.395 10.002 
2.445 10,004 
2.509 1 0.007 
2.5910.01 
2.68-tO.02 
2.7910.04 
2.90&0.08 
3.16+0.15 
3.3010.20 
3.5010.25 

2.0948+0.0009 

2.351 +0.007 
2.19510.002 
2.045+0.004 
1.909 -t0.007 
1.79 *0.01 
1.68 +0.02 
1.59 10.04 
I s o  1 0.08 
1.56 k0.15 
I .so 1 0.20 
1.50i0.25 

Figure 2. Numerical estimates of  the reduced limiting free enerpy S(p1 on ,he square 
latlice. Upper and lower bounds to S(p1 and [he asymptotic line L(P j, are included. 
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P 
Figure 3. As figure 2 but on the simple cubic lattice. 

Finally, we note that the plots of F(p) in figures 2 and 3 re very smooth and give 
no hint of the collapse transition which is expected to occur for some value of p = p, > 0. 
Of course, we expect that for p < 0, corresponding to repulsive interactions, S ( p )  will 
be analytic. 

3. Specific heat 

Rather than attempt numerical differentiation of F(p) in order to obtain the specific 
heat, we follow the approach taken by other workers (for example, Chang and Shapir 
1988) and differentiate the reduced free energy F,(p)  before taking the n - t m  limit, 
Accordingly, we define the specific heat either through 

W~=d2F,/dp2=((A2)-(A)2)/n (3.1) 

or through 

We,=p2d'F,,/dp2. (3.2) 

The relative merits of these different definitions have heen discussed previously by 
Gaunt and Flesia (1990). 

In figure 4, we plot Y?; against p for the square lattice for values of n s 19. All the 
curves are dominated by a single sharp peak which increases smoothly in height as n 
increases, Presumably this peak corresponds to the collapse transition. According to 
finite size scaling theory, the height h ;  of this peak should scale as nu"'", where & is 
the cross-over exponent and a, is the specific heat exponent. Assuming the hyper-scaling 
relation (Derrida and Herrmann 1983) 2-a , ,=  l / h ,  gives the height scaling as 

h ; -  n2*c1-I n- tm.  (3.3) 
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-4 - 2  0 2 4 6 

P 
Figure 4. The specific heat, W;,(p). of the square lattice for n =4-19. 

To estimate &, we have calculated 

(3.4) 

which should approach bo as n-m. In figure 5, we have plotted against I /n ,  
together with the extrapolants (Gaunt and Guttmann 1974) calculated from alternate 
pairs of points. We estimate for the two-dimensional square lattice 

bo = 0.60 f 0.03 d = 2 .  (3.5)  

In three dimensions, a similar analysis yields figure 6 and 

@,, = 0.82 i 0.03 d = 3 .  (3.6) 

The estimate in (3.6) is for the body-centred cubic lattice, although it is also consistent 
with less well-converged results for the simple cubic and diamond lattices. The plots 
of V2; against p for the body-centred cubic lattice are given in figure 7.  For n = 15 the 
curve has two distinct peaks and this is the first time that such behaviour has been 
reported for the function V2;(/3). We note that it does not occur for any other lattice, 
at least for the values of n that are currently available. Clearly, the height of the larger 
peak in figure 7 corresponds to the collapse and has been used in  (3.4) to calculate 

for the body-centred cubic lattice. It is possible that the smaller peak corresponds 
to a roughening transition (Dickman and Schieve 1984), which takes place at a lower 
temperature, T,, than the collapse transition at Tc. Anomalous low temperature 
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1 /" 

Figure 5. bo,,, and their alternate extrapalants plot- 
ted against I l n  for the square lattice. Our best e % -  
mate of  bo is indicated on the right-hand anis. 

Figure 6. As figure 5 but for the body-centred cubic 
lattice (0). together with far the simple cubic 
(+) and diamond (M) lattices. 

behaviour may be highlighted by calculating the specific heat e, using the alternative 
definition in (3.2); the p*-factor has the effect of diminishing the collapse relative to 
the roughening. Although evidence of roughening is found for all lattices in both two 
and three dimensions, the results for are not easy to interpret and we refrain from 
presenting them here. 

According to finite size scaling theory, the value of p at which %'; has its principal 
maximum, namely pmax(n), should approach pc as n increases like 

p,,,( n)=,&+An-""+ ... n + m  (3.7) 

where A is a constant amplitude. In figure 8, we plot p,,,(n) against l /n*" for several 
lattices in two and three dimensions using the central value of & in (3.5) and (3.6), 
respectively. In all cases, after some initial irregularities, the curves become quite 
smooth. For the square lattice, the curve passes through a minimum as n increases 
and we have tried to represent such behaviour by including in (3.7) an additional term 
as in 

p,,,(n) = p,+An-m"- E n " + .  . . n + m .  (3.8) 

In fact, the presence of such an analytic term is expected for all lattices on general 
theoretical grounds. Assuming the values of 4" given in (3.5) and (3.6), we have solved 
(3 .8 )  using successive triplets of pmdr( n)-values. This procedure gives sequences of 
estimates, P c ( n ) ,  which we have tried to extrapolate linearly against I/n.  For the 
diamond lattice, the data are too poorly converged for us to extract any estimate of 
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P 
Figure 7. The specific heat, %':,(P) ,  of the  body-centred cubic lattice for n =4-15. 

P c .  For the other lattices, we obtain the rather crude estimates 

flc = I /  T, = 0.5 + 0.1 (square) 

=0.35*0.3 (simple cubic) 

= 0.33 * 0.1 (body-centred cubic). (3.9) 

The central estimates in (3.9) suggest that, before it collapses, a two-dimensional system 
has to be  cooled to a lower temperature than one in three dimensions. This conclusion 
was also reached for the C-model, i.e. a cycle model of lattice animals, strongly 
embedded in the lattice with site counting (Derrida and  Herrmann 1983, Lam 1987, 
1988). The coordination numbers of the embedding lattice are also important. In three 
dimensions, it is expected that a system on the  body-centred cubic lattice will collapse 
earlier than the same system on the simple cubic lattice (as the results in (3.9) show). 
This is because near-neighbours are more abundant in the former case. 

4. Summary and discussion 

In this paper we have investigated numerically, for the first time, the collapse that 
occurs in a lattice tree model of branched polymers. In section 1, we summarized some 
rigorous results (Madras et a /  1990), including upper and lower bounds, for the 
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Figure 8. P,.,(n) plotted against I /no."  for the square lattice and against I / n o Y 2  far the 
simple cubic and body-centred cubic lattices. 

temperature dependence of the reduced limiting free energy S ( p ) .  In addition, we 
reported in the appendices some new exact enumeration results for lattice trees, derived 
from data obtained by J L Martin and M F Sykes (see Madras et a /  1990 and to be 
published). In section 2, these data were used to obtain numerical estimates of 5 ( p )  
which compare very well for p s 0 and satisfactorily for small p > 0 with the rigorous 
bounds. Although there is no proof, it appears very likely that 5 ( p )  is asymptotic to 
log A, as p + -m. In addition, our numerical results support the conjecture that, for 
the square and simple cubic lattices, the reduced limiting entropy of the compact phase 
is equal to (or at least very close to) the rigorous lower bound in (1.10). 

From the specific heat, we have obtained in section 3 estimates of the collapse 
transition T, and the cross-over exponent &, in  two and three dimensions. Our hest 
estimates for 4" are around 0.60 in two dimensions and 0.82 in three dimensions. 
Given +,, the specific heat exponent 01" is given by the hyper-scaling relation (see 
Derrida and Herrmann 1983, Chang and Shapir 1988) uu= 2 -  ( l /&) .  

are not in agreement with the Flory exponents 
( D a o u d e t a l 1 9 8 3 ) o f ~ , = ~ = 0 . 8 3 3  . . .  ( d = 2 ) a n d ~ , = ~ = 0 , 6 8 7 S ( d = 3 ) . ~ i s i s n o t  
particularly surprising since the upper tricritical dimension for this problem is d, = 6. 
It is perhaps more surprising that the Flory theory does not even predict the increase 
of 4, when going from d = 2 to d = 3. 

The above values of 4" for lattice trees (!-model) may be compared with numerical 
estimates of q5 for the C-model. In two dimensions, the best estimate is d~ = 0.657 * 0.025 
obtained by Derrida and Herrmann (1983) using transfer matrices on finite strips 
together with finite size scaling. In three dimensions, Lam (1988) has used Monte 

These values of the exponent 
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Carlo data to estimate 4 ~ 0 . 8 1 4 ,  while exact enumeration data give 4 = 1 (Chang and 
Shapir 1988). These results indicate that the t-model and C-model may be in different 
universality classes, although the evidence is not conclusive. 

The two peaks in % e l @ )  for the body-centred cubic lattice and the anomalous low 
temperature behaviour of Wn( T) for both two- and three-dimensional lattices have 
been interpreted in terms of a possible roughening transition. The possibility of a 
roughening transition was first suggested by Dickman and Schieve (1984) for the 
C-mode! of collapse in lattice animals, Evidence which muy indicate roughening in 
the C-model has been obtained for two- and three-dimensional lattices using both 
Monte Carlo techniques (Dickman and Schieve 1984, Lam 1987) and exact enumeration 
data (Gaunt and Flesia 1990). Anomalous low temperature behaviour, possibly related 
to roughening, has been observed therefore in both a lattice animal cycle (C-) model 
and the lattice tree contact (t-) model in both two and three dimensions. 
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Appendix i. Partition functions &(Bj with x =eQ 

Square 

z, = 1 z,=2 Z 3 = 6  

-7; = 18 + 42 

Z, = 570+672x+332x2 

Z9=6473+10880x+9972xZ+4064x3+192x4 

Zl0= 22 202+43 220x+46 004x2+27 392x'+6062x4 

Zll =76886+169784x+207444xL+148728x3+63852x'+5696xs 

Z I 2 =  268352+662424x+912378xZ+755 936x'+435 330x4+ 111 112x'+4830x6 

Z,3 = 942 65 1 + 2 573 976x + 3 923 9 4 8 2  + 3 71 8 712x1+ 2 497 462x4+ 1 047 168x5 

Z' = 5 5 + 3 2 x  -0 7. = !74+!60x+3Ox2 

Z, = 1908 + 2712x + 2030x2+ 336x3 

+ 173 400x" 

Z,4= 3 329608+9 967 932x+ 16621 216x'+ 17 685 192x3+ 13 472960x4+7 173 256x' 

+ 2  280 164x0+ 196 6 0 8 ~ '  

Z,,= I I  817 582+38489344~+69641 568x'+81 730 120x3+69928992xJ 

+43 064 560x'+ 19 087 660x6+4 218 176x7+ 180 6 7 4 ~ '  
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Z16=42 120340+148278528~+289 148 184x2+370021 256x'+349897084x4 

D S Gaunt and S Flesia 

+243 682636xs+ 129300260x6+45287 440x7+6961 342x8+100352x9 

Z17=150682450+570 19744Ox+l 191 271 268x2+1 649049272x3+1699 1 6 5 0 8 2 ~ ~  

+ 1 320 197 000x5+795 256 592x6+355 393 128x'+99 763 798x8 

+9 630 5 6 0 ~ '  ."-, > - .  C.l 2 ,  
, ,-34U63iL14+L 16Y 3460.70Xf4510431 3 4 4 X - t  I L3L305 I L X X '  

+8068090292x4+6 885986 552x5+4626204916x6+2408 178984~ '  

+922980400xR+197901 280xy+11 189428~ ' "  

Z,g= I 9 4 6  892 842+8 395 558 272x+ 19 853 269 060x2+31 536 512904~'  

+37628498 868x4+3483X434432xs+25760261 240x6 

+15095 548 080x7+6936931 8 9 2 ~ ~ + 2 2 3 0 8 6 6 6 6 4 ~ ~ + 3 5 9 4 0 9 3 3 2 x ' ~  

+9934152x". 

Diamond 

z, = 1 z,=2 Z 3 = 6  z,=22 Z5 = 91 

2,=396+12x 2,=1782+144x Z,= 8186+ l248x 

Z,= 38 199+9120x+ 192x2 

Z,, =862642+377 520x+37 8 3 6 ~ ~ 1 2 0 4 8 ~ '  

ZI2=4 161 378+2259 888x+348966x2+26664x3 

Z,,=20245 844+13 148 256x+2 820900x2+294464x3+8064x4 

Z14=99 248 728+74 993 1OOx+ 20 851 026x2+2 896 056x'+ 162 816x4+ 5292x5 

Z,,=489826224+421 826 7X4x+14457S364x2+25871 376x'+2260878x4 

Z,o= 180544+60 504x+3318x2+128x' 

+ 105 840x5 

Z,, = 2  431 989 718+2 349 583 788x+956 672 442x2+213 316 024x3+25 643 988x4 

+ 1 770 0 7 2 ~ '  

Z,,= 12 139384 729+12996 154944x+6 114841 356x2+ 1646 561 296x' 

+255 815 5 3 2 ~ ~ 1 - 2 3  851 032x'+577 584x6 

Z,,=60883076058+71 522393940x+38082029826x2+12049 148736~'  

+2318999586x4+280 161 948x5+13708980x6+320760x7 

ZIq=306652 125954+392 142612648~+232532813 844x2+84481 367760~'  

+ 19 506 872 034x4+2 939 600 352x5+227 075 520xh+7 698 240~' .  

Simple cubic 

z, = 1 z, = 3 Z,=15 Z, = 83 + 12x 
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Z5=486+192x Z6=2967+1992x+270x2 

Z, = 18 748+ 17 616x+ 5700x2+400x' 

Z8=121725+145872x+73902x2+16104x3+384x' 

Z9= 807 381 + 1  173 216x+785 448x2+299 472x3+29280x4+9216xS 

Z,,=54472O3+9296964x+7608912x2+3 986592x'+970845x4+167760x' 

+ 33 024x6 

Z, ,=37264974+73034952~+70 171 248x2+45 126408x3+17533428x4 

+4004592x5+919680x6+104880x' 

Z,,=257896500+570616752~+627603 288x2+469 676808x3+240021 897x4 

+80393 760xs+19664922x6+4958 880x7+94500x9 

Z,, = 1 802 312 605+4 442 485 104x+ 5 494079 484x2+4 654 566 416x' 

+2 850 265 746x4+ 1 261 429 248x5+393 237 032x6+ 117 012 7 6 8 ~ '  

+13714224x8+3 024000~ '  

Z,,= 12701 190885+34507622736~+47 335 340 712x2+44629965 192x' 

+ 3 1  267320963x4+16759746024x'+6685661 748x6 

+2258748744x7+529 155 132xx+87 143832x9+12835 2 3 6 ~ ' '  

ZI5=9O 157 130289+267 647 434 752x+402 881 113 224x2+417 554 922 912x' 

+326 433 287 382x4+201 109 725 768x5+97 191 844 656x6 

+38621 502576x7+12 136805082xR+2793 699792x9+49O539864x'" 

+ 59 724 096x" 

Z,,=644O22OO7O4O+2O73965899752x+339636237O27Ox2+3 832392373520~' 

+ 3  291 565 921 095x4+2 263 013 083 236x5+ 1 262 410 265 762x6 

+ 5 8 5  705 055 176x7+222 946 129 560x8+67 977 369 6 2 4 ~ '  

+15 1 3 8 7 2 6 1 6 8 ~ ~ ~ + 3 0 7 5  171 048x"+131441 760~ '~+37544640x ' '  

Z1,=4626 159 163233+16061 510248344x+28413305010864x2 

+34637466582840x3+32323 821 031 008x4+24369368927352x5 

+15 197610620388x6++021 550231 096x7+3 5 5 9 8 6 2 0 8 8 0 7 2 ~ ~  

+ 1 320293 720 400x9+383 349 428 328x'"+93 494 805 744x" 

+I4202593 592~"+1465427712~"+178 124544~".  

Body-centred cubic 
z, = 1 z2 = 4 Z, = 28 Z, = 204 + 48x 

Zs=1562+864x+144x' Z,= 12544+10824x+4032x'+960x3 

Z, = 104 756 + 120 048x + 71 136x2 + 26 6 0 8 ~ ~  + 7 3 4 4 ~ ~  
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2, = 900 168+ I 279 3 4 4 ~  + 1 001 41zx2+524 752x3+22n mX4+ 57 024xs+2816x6 

Z9=7901843+13415424x+12729 888x’+8478544x’+4572576x4+1 873 584x’ 

+552 o8sX6+44 i6nx7 

+ 4 i  3 9 7 6 4 8 ~ ~ + 1 8 0 4 9 7 0 0 ~ ~ + 5 3 0 9 9 5 2 ~ ~ + 7 9 8 2 8 8 ~ ~  

- Z ; ~ = ~ ? X  _ _ _  _ _ _  w x ? n + !  --. 438759x7zx+! 8!n2?2?44x2+! h31453904,~~ 

Z,,=70545 284+139356264~+ 154046760x2+ 121 832944x’+78940680x4 

+1 220529240x4+758618640x5+407983040x6+176859312x7 

+58 034952x8+11 2 3 6 3 0 4 ~ ~ + 3 7 8 0 0 0 x ‘ ~  

ZI2 = 5 847 741 388+ 14 797 602 912x+20 839 131 300x2+ 21 115 886 128x’ 

+ 1 7 s 9 ~ 2 ~ 9 o 6 o ~ ~ + I 2 4 4 4 6 1 4 s 4 4 ~ ~ + 7 7 2 3  7 5 7 9 7 6 ~  

+4 128 654 192x7+1853 249 760x8+655 744368x9+150059244x” 

+ 14 405 52bx” 

2,’ = 54 073 952 472+ 151 836 363 792x+236 264 310 264x2+264 433 527 6 1 6 ~ ’  

+242265305232x4+189919078224xs+131 6 3 5 6 2 0 7 5 2 ~ ~  

+SO 760 938 880x7+43 631 955 612xn+20 184 138 528x9 

+7 592 349 4 0 8 ~ ’ ~ + 2  024 575 056x”+307 128 840x”+ 12 147 8 4 0 ~ ’ ~  

Z,,= 504 210 769416+ 1 555 713 958 704x+2 648 010933 408x2+3 238 334740 208x’ 

+3226458327804x‘+2757673722048xs+2091 825408 512x6 

+ 1 422 907 772 304x7+ 871 605 859 524xR +475 787 185 832x9 

1226 671 366 192x’’+90 147 469 7 2 8 ~ “  +27 117 230 5 9 6 ~ ’ ~  

+5630305 200x”+403 79064Oxl4+39655 424x” 

Z,,=4735591774476+15925717 164240~+29414288060664x~ 

+38968278 158 176x2+41 882015 193744x4+38610300779664xs 

+31625 742 605 544x6+23 384 443 224 576x’+ 15 743 620 564 512xx 

+ 9 6 4 6 0 4 4 8 3 9 0 0 8 ~ ~ + 5 3 2 9 8 7 6 7 4 6 3 3 6 ~ ‘ ~ + 2 6 1 1  080091 3 9 2 ~ ”  

+1088802260900~’~+367415 527 152~“+89064438480x‘~ 

+ 12 584 378 528x“+ 1 047 822 336x“+28 311 5 5 2 ~ ” .  

Appendix 2. Bond and site trees 

Using the data in appendix 1, we can derive the number of trees with n sites, weakly 
and strongly embedded in the lattice, i.e. bond and site trees, respectively. From the 
definition of Z,,(p) in (l. l), we see that the coefficient independent of x is the number 
of strongly embedded trees, and that the number of weakly embedded trees is obtained 
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by putting x = 1 and summing. This procedure supplements the previously known data 
as follows: 

Square. The bond trees given by Whittington et a /  (1983) for n s 15 are supplemented 
by 

1 624 797 422 ( n  = 16) 7 840 606 590 ( n  = 17) 

37979513054 ( n = l 8 )  184592118338 ( n = 1 9 )  

while the site trees given by Duarte and  Ruskin (1981), Gaunt et a /  (1982) and  
Whittington et a /  (1983) for n s 17 extend as 

540 832 274 (n = 18) 1 946 892 842 ( n  = 19). 

Diamond. Site trees have been given by Duarte and Ruskin (1981) for n S 12 and 
continue as  

20 245 844 ( n  = 13) 99248728 ( n = 1 4 )  

489 826 224 ( n  = 15) 2431989718 ( n = 1 6 )  

12139384729 ( n = 1 7 )  60 883 076 058 ( n  = 18) 

306 652 125 954 

Bond trees for n S 19 are given in table 2. 

Simple cubic. Bond a n d  site trees given by both Gaunt et al (1982) and  Whittington 
et al (1983) for n S 11 are  extended by 

( n  = 19). 

2270927307 ( n = 1 2 )  21 032 126 627 ( n  = 13) 
196774731204 ( n = 1 4 )  1 857 077 730 393 ( n  = 15) 

17658743358651 ( n = 1 6 )  169023638003517 ( n = 1 7 )  

Table 2. Bond trees for the diamond and body-centred cubic lattices 

n I,, (diamond) I,, (body-centred cubic) 

I 
2 

8 
9 

i n  
I 1  
I 2  
13 
14 
15 
16 
17 
18 
19 

1 
2 
6 

22 
91 

I 9 2 6  
9 434 

47511 
244 494 

6 796 896 
36517528 

I084466466  

33 177 186473 
185 149839834 

408 

I 280 046 

198 157018 

5 9 7 8 ~ 7 6 0 3 2  

I 038 490 166 352 

1 
4 

28 
252 

2 570 
28 360 

329 892 
3 986 292 

49 568 107 
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for bond trees, and for site trees by 

D S Gaunt and S Flesia 

257 896 500 ( n  = 12) I802312605 ( n = 1 3 )  

12 701 I90 885 ( n  = 14) 90 157 130289 ( n =  15) 

644 022 007 040 ( n  = 16) 4626159163233 ( n = 1 7 ) .  

Body-centred cubic. Site trees have been given by Duarte and  Ruskin (1981) for n s 9  
nnrl mnt;m,P  n C  ...... -" ...... ". .." 

70 545 284 (n = IO) 638 589 820 ( n  = 11) 

5 847 741 388 ( n  = 12) 54 073 952 472 ( n  = 13) 

504210769416 ( n  = 14) 4735591774476 (n=15). 

Bond trees for n =s 15 B E  give!? in !&!e 2. 
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